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Nonlinear Bloch waves in metallic photonic band-gap filaments
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We demonstrate the occurrence of nonlinear Bloch waves in metallic photonic crystals (PCs). These peri-
odically structured filaments are characterized by an isolated optical pass band below an effective plasma gap.
The pass band occurs in a frequency range where the metallic filament exhibits a negative, frequency-
dependent dielectric function and absorption loss. The metallic losses are counterbalanced by gain in two
models of inhomogeneously broadened nonlinear oscillators. In the first model, we consider close-packed
quantum dots that fill the void regions of a two-dimensional (2D) metallic PC, and whose inhomogeneously
broadened emission spectrum spans the original optical pass band of the bare filament. In the second model, we
consider thin (10-50 nm) layers of inhomogeneously broadened two-level resonators, with large dipole oscil-
lator strength, that cover the interior surfaces of 2D metallic (silver and tungsten) PCs. These may arise from
localized surface plasmon resonances due to small metal particles or an otherwise rough metal surface. For
simplicity, we treat electromagnetic modes with electric field perpendicular to the plane of metal periodicity. In
both models, a pumping threshold of the resonators is found, above which periodic nonlinear solutions of
Maxwell’s equations with purely real frequency within the optical pass band emerge. These nonlinear Bloch
waves exhibit a laserlike input pumping to output amplitude characteristic. For strong surface resonances, these
nonlinear waves may play a role in light emission from a hot tungsten (suitably microstructured) filament.

DOI: 10.1103/PhysRevA.76.053838

I. INTRODUCTION

The interference of scattered electromagnetic waves gives
rise to the fundamental phenomenon of light localization un-
der suitable circumstances [1,2]. In certain types of photonic
crystals (PCs), this is facilitated by the emergence of a pho-
tonic band gap (PBG) [2,3], where optical pathways for es-
cape from a trapping center are eliminated by destructive
interference. An important consequence of light localization
[2] is the elimination of ordinary spontaneous emission [3,4]
from atoms or quantum dots and the formation of photon-
atom bound states [5,6]. In free space the density of electro-
magnetic modes is proportional to the frequency squared. In
PCs with photonic band gaps, spectral regions surrounding
the PBG may experience an enhanced density of states
(DOS), where many more modes than in free space are avail-
able for propagation. This engineering of the density of elec-
tromagnetic modes has applications ranging from optical
switching in dielectric structures [7,8] to exceptional thermal
light emission in metallic PBG filaments [9-11].

Metallic photonic crystals may exhibit a large spectral gap
at low frequencies without recourse to scattering and inter-
ference mechanisms. In a bulk metal, mobile charge carriers
can screen out electromagnetic waves at frequencies below
the plasma frequency [12]. When such a metal is periodically
structured with void regions in the form of a photonic crystal
filament, a lower effective plasma frequency exists [13], be-
low which electromagnetic propagation is screened out. The
resulting photonic band gap results from a combination of
plasma screening effects and Bragg scattering. Tungsten-
based PBG filaments of this type have been studied in both
the woodpile geometry [9—11] and the inverse opal geometry
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[14]. An intriguing possibility with metallic PBG filaments is
the engineering of a sharply defined optical pass band below
the effective plasma screening frequency [15]. This electro-
magnetic pass band arises from the periodic network of void
regions in the PBG filament, enabling light to propagate
largely through air and to avoid the screening electrons of the
metallic filament. This optical pass band can provide a
narrow-transmission band while the remainder of the plas-
monic PBG acts as a filter for other frequencies of radiation.

Within the interior of a PBG filament, the optical pass
band is a spectral region where the electromagnetic density
of states acquires a very large value, surrounded by a broad
band of nearly vanishing mode density. It is of interest to
study the behavior of internal light emitters that couple to
modes in such an optical pass band. One possibility is
through intentionally placed colloidal quantum dots that are
infiltrated within the void regions of the microstructured me-
tallic filament. Another source of light emission may arise
from unintentional localized plasmonic resonators that form
on the interior surfaces of the metal during the synthesis of
the filament. These may take the form of small metal par-
ticles that contribute to metal surface roughening. Recently, a
striking interplay was observed between localized plasmonic
resonances due to small particles [created during a sputtering
process for fabrication of one-dimensional (1D) metal grat-
ings] and extended surface plasma waves on the grating
[16,17]. In an electrically pumped metallic filament, such
resonators could be excited and emit light, over and above
thermal, blackbody radiation. Thermal light emission gener-
ated by electrical pumping and heating of the metallic PBG
filament may exhibit exceptional intensity in the spectral
range of such a pass band.

Experimental studies have revealed spectral selection of
thermal radiation generated by high-temperature microstruc-
tured metallic (tungsten) PCs [9-11] and metallic surfaces
[18] even in the absence of optical pass band engineering. In
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the case of metallic PCs, thermal light spectral features very
distinct from standard blackbody radiation are observed,
showing peaks at frequencies corresponding to structural fea-
tures of the underlying PC. These peaks become more pro-
nounced as the temperature of the metallic structure is in-
creased, suggesting a nonlinear or threshold phenomenon
over and above the linear electromagnetic band structure ef-
fects. A more complete picture of radiation from thermally
excited filaments can be obtained by considering both the
response of an inhomogeneously broadened distribution of
dipole resonators within the light-emitting filament and the
multidirectional feedback mechanism provided from the un-
derlying PC. This situation lies within the purview of the
nonlinear Bloch wave method introduced recently [19] to
describe resonant nonlinear photonic crystals with a com-
plex, frequency-dependent dielectric function.

In this paper, we demonstrate the existence of nonlinear
Bloch waves for the case of a metallic backbone PC where
the real part of the dielectric function is both negative and
frequency dependent, and the imaginary part of the dielectric
function is also considered. For simplicity, we restrict our
numerical studies to 2D metallic PCs where the electric field
vector is everywhere perpendicular to the plane of periodic-
ity (E polarization). Our previous analysis [19] considered
materials where the real part of the dielectric constant of the
combined system (backbone PC plus the nonlinear resona-
tors) was strictly positive at all frequencies. This restriction
was respected in order to achieve rapid convergence of our
iterative, self-consistent method. If, on the other hand, the
dielectric constant of one component of a two-component PC
is negative, the plane wave expansion (PWE) method yields
an “indefinite” matrix whose eigenvalues w?/c? are formally
either positive or negative. The linear band structure of the
metallic PC can, in principle, be constructed keeping only
the physical, positive eigenvalues. This straightforward ap-
plication of the PWE method to negative dielectrics produces
a stable photonic band structure for the 2D E polarization
case. However, the band structure obtained for the 2D H
polarization (magnetic field vector perpendicular to the plane
of periodicity) is highly unstable (depending sensitively on
the number of plane waves employed). This may be a con-
sequence of the existence of surface plasmon modes,
strongly localized along the interior surfaces of the metallic
PC, which are not efficiently represented by a small finite
sum of plane wave states.

Negative values of the dielectric are possible only for a
frequency-dependent response of the material to the applied
electromagnetic fields. The dielectric response of an ideal-
ized metal has the Drude frequency dependence 1
—w,z,/ w(w+i7"). In the Drude model, ), is the plasma fre-
quency and 7 is the average collision time of free electrons.
For ideal conductors 7—o0 and can be dropped altogether
from the metallic dielectric function. Then the dielectric
function is negative for frequencies below the plasma fre-
quency. The frequency dependence of the dielectric response
leads to an eigenvalue problem in which the matrix obtained
from the PWE method depends on the eigenvalue itself. The
resulting eigenvalue problem is no longer linear. The cutting
surface method (CSM) [15] approaches this nonlinear prob-
lem by solving a family of related linear systems described
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by a continuum of constant negative dielectrics in the metal-
lic region. As the negative value is varied over a reasonable
range, photonic band surfaces are obtained using the PWE
method. The true eigenfrequencies, allowed from the
frequency-dependent dielectric, are found by intersection of
the band surfaces with the frequency-dependent dielectric
function (cutting surface). The resulting band structure ob-
tained by the CSM for an ideal Drude conductor agrees very
well with that obtained independently by Kuzmiak et al.
[13].

In the approach of Kuzmiak et al., the Drude dielectric
response of the metal is incorporated into the PWE method.
For the specific frequency dependence 1 - w?/w?, a lineariza-
tion of the eigenvalue problem ensues. fhe approach of
Kuzmiak et al. is elegant but highly specialized. The CSM,
on the other hand, can treat a background dielectric different
from unity and other non-Drude functional forms of the di-
electric response of the metallic regions, assuming this re-
sponse is linear and contains no losses (or gain).

In this paper, we modify the nonlinear Bloch wave
method introduced earlier for positive dielectrics [19], by
incorporating the Drude response of the metallic regions
from the outset, following the approach of Kuzmiak et al.
We focus on the technically simple case of 2D E polarization
in a metallic backbone photonic crystal (BPC) and we gen-
eralize the nonlinear Bloch wave method to treat an incoher-
ently pumped, inhomogeneously broadened distribution of
two-level resonators that either fill the voids of the metallic
PC or form a thin coating on the interior surfaces of a me-
tallic PC. For concreteness, we consider a square lattice of
metallic rods of circular cross section, with a realistic com-
plex dielectric function taken from experimental data. These
metallic rods allow for a connected network of voids that
enable an isolated optical pass band below the effective
plasma frequency of the filament. The 2D H polarization
case will be the object of future work.

This paper is organized as follows. In Sec. II we formu-
late equations for determining the Drude backbone photonic
crystal (BPC) normal modes and we discuss their normaliza-
tion. In Secs. IIT and IV we extend the nonlinear Bloch wave
method for negative dielectric BPCs. In Sec. V we numeri-
cally verify the validity of our self-consistent nonlinear inte-
gral equation for Bloch modes by applying it to the simple
case when the nonmetallic void regions have a uniform, lin-
ear, frequency-independent dielectric constant different from
unity. In Sec. VI we apply our method to a realistic non-
Drude dielectric backbone PC with values taken from experi-
mental data. The space between metallic rods is modeled
with various coatings of nonlinear oscillators capable of
emitting and absorbing light in the spectral vicinity of the
optical pass band. The optical response of the inhomoge-
neously broadened collection of the emitters is described by
a complex, frequency-dependent, nonlinear susceptibility.
We observe that for sufficient incoherent pumping (from ei-
ther electrical or other heat sources) self-consistent Bloch
waves emerge whose amplitude exhibits a threshold behavior
with pumping. The threshold pumping for these nonlinear
Bloch waves (with purely real frequency and nondecaying
amplitude) in this dissipative medium depends on the density
of resonators, their dipole oscillator strength, and their vol-
ume filling fraction in the filament.

053838-2



NONLINEAR BLOCH WAVES IN METALLIC PHOTONIC...

I1. BASIS STATES OF A METALLIC BACKBONE
PHOTONIC CRYSTAL

For the backbone of our system, we consider a 2D metal-
lic photonic crystal in which the imaginary part of the dielec-
tric function is initially neglected. This allows us to identify
suitable basis functions for the treatment of nonlinear dielec-
tric components added to this metallic backbone as well as
the imaginary (loss or gain) part of the overall dielectric
function.

We define z as the direction perpendicular to the plane of
periodicity of the crystal, and we denote E =(0,0,E) and H
=(H,,H,,0) as the electric and magnetic fields, respectively,
for an electromagnetic wave polarized along the z axis. Max-
well’s curl equations can be expressed as

iw - iw
dH,-dH,=——e(rE and VE=-—(H,-H,),
: c c

where 7 is the two-dimensional vector in the plane of peri-
odicity, r=x£+yy, and V=%d/dx+yd/dy. The eigenvalue
problem of the 2D PC is formulated in terms of the electric
field E, by eliminating H, and H, from the above:

2 w’
V’E + ?e(F)E=0 (1)

It is useful to introduce a step function

0,7 1 in metallic regions, 2

M\ = 0 otherwise,
in order to separate the metallic and void regions of the PC
filament. Let €,(w)=¢€,— w,z,/ ? be the real part of the dielec-
tric function of a Drude-type metal and let €, represent the
real, positive dielectric constant of the other component. The
position-dependent dielectric function of the photonic crystal
is then given by &(r)=¢,+[€,(w)—€,]0,(7). This can alter-
natively be expressed as

e(r) = egpc(r) + 4y, (1), (3a)
where
egpc(F) = € — (@) Oy (7) (3b)
and
4mxo(P) = (&9 — &) Oy (P). (3¢)

We refer to egpc(7) as the dielectric function of the backbone
photonic crystal, whereas 4y, (7) is considered as a “per-
turbation.” The BPC can then be treated using the approach
of Kuzmiak et al. For the purpose of defining basis func-
tions, we consider the wave equation for the backbone PC,

(.02

2
%)
VZE-—L0,(PE+—€E=0. (4)
¢ ¢
Equation (4) is self-adjoint and its solutions are orthogonal
Bloch modes of the form E (N =e*"u(r), where u(r)
=3ii(G)e'S" has the periodicity of the direct lattice. Here k
is the Bloch wave vector from the first Brillouin zone. The
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eigenmodes i ,(r) of Eq. (4), with band index /, have eigen-
values w=wj; and, upon suitable normalization (see the Ap-

pendix) satisfy the orthonormality condition
1
v f &r (D i(F) €g4(F) = 8; 58,1 (5)
v

where €,(F) = eb—(w;/ wlzz )0y(r). This can be expressed as

1 .
]_)f d*r ;1) i (1) ey = ag16; 56, (6a)
v

where

2 1 .
a,;,zz(u%”—; &r w,;,(w,;,,(r*)aM(f)), (6b)
v

Wr

and the integration is over the whole two-dimensional vol-
ume V of the photonic crystal. In metallic regions, for fre-
quencies wj;<w),, the dielectric function €f,(r) is negative.
Here, the fields iz ,(r) do not penetrate deeply into the me-
tallic regions. The eigenmodes i ,(r) nevertheless form a
complete basis, and an arbitrary electric field, polarized per-
pendicular to the plane of periodicity, can be written as

E(r)= Zfi,z‘ﬂ/?,/(’j)- (7)
i

This expansion is suitable for describing more general Bloch
waves arising from complex, nonlinear modifications to the
void regions surrounding the metallic backbone PC and for
non-Drude modifications of the backbone itself.

III. GREEN’S FUNCTION OF METALLIC BACKBONE
PHOTONIC CRYSTAL

With the addition of a general complex susceptibility to
the backbone PC described above, Eq. (1) for the E-polarized
field becomes

(02
VZE,(7) + ?[EBPC(F) +4mx,(r)JE,(r) =0. (8)

In general, the perturbation 44y, (7) is a nonlinear, spatially
varying, complex function of frequency and it can occupy
any region of space. In this section, we construct an exact
integral equation formulation of the wave equation in which
the Green’s function kernel describes the relevant properties
of the BPC and the complex, nonlinear perturbation causes
further multiple scattering. This integral equation must, in
general, be solved by an iterative technique that leads to
self-consistency between the input electric field amplitude
and the output amplitude. The total electric field E () at
point 7 can be represented as a superposition of all Bloch
modes of the BPC [see Eq. (7)]. Inserting Eq. (7) into Eq. (8)
and using Eq. (4), we obtain

2 filop, = )N = 0Amx (DELD.  (9)
kl
Multiplying both sides of Eq. (9) by zpj;’n(f), integrating over

the whole photonic crystal, and using Egs. (6a) and (6b), we
obtain
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1 g (F) o
fin:)—} Ld%’ zq,n 4y (FELF),  (10a)
where
2
_ Wg
Aj, = = -1/az, (10b)

Multiplying both sides of Eq. (10a) by ¢ ,(r) and summing
over {g,n}, we obtain the required integral equation

E(D) = f PG AmyFES), (1)
V %

where

éw(;, ’_:,) _ 2 ‘/’é,l(a wcj,[(" ) (12)

i A
is the Green’s function of the BPC.
IV. PERIODIC INCLUSIONS WITHIN A METALLIC
FILAMENT

We now specialize our treatment to perturbations of the
BPC that preserve the periodicity of the metallic PC. In this
case

X(P) = Z X +R), (13)
R

where R is a translation vector of the BPC and x(7) is a

function different from zero only within the primitive cell of
the BPC. We seek solutions E(7) of Eq. (11) that satisfy the
Bloch periodicity

E (7 +R) = ¢ RE, (7)., (14)

where ¢ is a Bloch vector from the first Brillouin zone of the
lattice. Using Egs. (11), (13), and (14) we can write

ESA) = | GG amgE). (150
Volv,
where
(D) ()
ga)q(r r/)_zl’bq’l;#’ (15b)
! ql

and where V,=V/N is the two-dimensional volume of the
unit cell (defined in the plane of periodicity) of a PC with N
unit cells, spanning a total volume V. In the following we use
the notation

1
CARTES w R AGIAGEGE (16)
07y,

From Egs. (15a), (15b), and (7), and the orthonormality
given by Egs. (6a) and (6b), we obtain an iterative equation
for the expansion coefficients of the full Bloch wave ampli-
tude:
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fioty = i, 2 (W J4mxli o) fe - (1)

@yl
Equation (17) reveals that f; ; =0 if ky#q, ¥ 1, Using
this observation and introducing h;,=f; @z ,/c, we obtain

C2

EB ibsl)hgy, —; Gy (18a)
where
01,1 (B4l
By(ly:ly) = 2212+ 242 _ ¢11~
W51/ 1+ (@)W | Ol .,)
(18b)
and [see the Appendix for the definition of ¢ (r)]
S
~ pi(r G
‘ﬂlE,z(F) = = (18¢c)
wg’,/c

Equation (18a) can be rewritten in the form of a standard
eigenvalue equation by multiplying both sides with the in-
verse matrix B;(l3 ;1,) and summing over [,:

wZ

EB (Us3lhgr, = iy, (19)

V. PHOTONIC BAND STRUCTURE OF A METALLIC
FILAMENT WITHOUT LOSS

To verify the validity and numerical accuracy of our inte-
gral equation formulation for the negative dielectric function
BPC, we consider a simple Drude model for metallic rods of
radius r=0.4a in a 2D square lattice, where a is the lattice
constant. The dielectric function in the metal is modeled as
ea(w):eo—wi/ w?, where the plasma frequency is chosen to
be that of bulk silver. The metal rods are embedded in a
matrix with dielectric constant ¢,. In this diagnostic calcula-
tion we neglect all imaginary parts of the dielectric func-
tions. The scaled plasma frequency of the metal is w,
=a/\,. For silver 1/\,=7.27 um™, and €=1.0 [20]. We
consider a PC with €,=4.0 and we choose the lattice constant
a=320 nm= w,,=2.33. The total dielectric function of the
photonic crystal, Eq. (5), can be separated into two equiva-
lent forms:

(i) epc(r) =€, - (wﬁ/aﬁ) Op(7)

and

47TXw(F) =(&—€) GM(F);

(i) eppc(F) = € — (@) w?) Oy (7)

and

477Xw(7) =(& - €)1 - HM(;)]-
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FIG. 1. (Color online) Comparison of photonic band structure
obtained by CSM and integral equation method for a 2D square
lattice of metallic rods with r=0.4a and eazeo—a)lz)s/ wf, where ¢
=1.0 and w,,;=2.33, in dielectric background of €,=4.0. Solid lines
represent the photonic band structure obtained by our self-
consistent, iterative method. 3000 plane waves are used to calculate
the BPC band structure and only the first 150 BPC modes are con-
sidered coupled from the perturbation. The dots represent the cal-
culation using the CSM. The agreement is nearly perfect for the
eight lowest bands but deteriorating for higher bands due to the
limited number of BPC modes used in constructing the Bloch
modes of the complete PC.

These two partitions differ (assuming €, # €;,) in the set of
BPC basis functions used to represent the total electric field
Eq. (7). The perturbation 47y, (7) in case (i) is uniformly
distributed within metallic rods [~ 6,,(r)], whereas in case
(if) it is uniformly distributed outside the metal {~[1
—0,,/(7)]}. We compare the numerically determined photonic
band structure of these two formulations of the same prob-
lem with the previously established cutting surface method
[15] as a consistency check of the formulation Eq. (19). 3000
plane waves are used to determine the eigenfunctions of the
BPC, and only the first 150 BPC modes are considered in
constructing the Bloch modes of the complete PC. We have
verified that the results of cases (i) and (ii) are identical as
expected. In addition, we use the CSM with 3000 plane
waves for each of 200 pairs [ €,, €,=4.0] where €, is varied in
the range (—40,5). The cutting surface is determined from
the equation €,= 1.0—w12”/ w?. The results of our self-
consistent integral equation and the CSM are shown in Fig.
1. For lower bands, the agreement between the CSM and our
integral equation approach is nearly perfect.

VI. INCLUSION OF INHOMOGENEOUSLY BROADENED
NONLINEAR RESONATORS

We now apply our computational method to explore the
possibility of nonlinear Bloch waves with purely real eigen-
frequency in lossy metallic filaments where complex dielec-
tric functions are obtained from experimental data. As a pos-
sible counterbalance to intrinsic losses in realistic metals, we
include nonlinear resonators that are activated by external
incoherent pumping within the void regions of the filament.
We also consider a thin layer of strong resonators on the
interior surfaces of the periodically structured metal filament
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FIG. 2. (Color online) Full dielectric function of silver deter-
mined experimentally at room temperature is e(w):eo—wlz,/ w’
+47 X metat(®). The lattice constant a=320 nm is used to calculate
the scaled frequencies w;=a/\. (a) The remaining optical dielectric
function 47X mewi(@,), after (b) the real Drude part eo—w;v/wf,
where €=1.0 and w,;=2.33, is subtracted from the full dielectric
function. Spectral features observed in Ypew(®,) are related to elec-
tronic interband transitions in bulk silver.

that may be activated by an electrical current.

These resonators can provide additional loss when resid-
ing in their ground state but can also provide gain to the PC
filament when pumped to their excited state. We find, re-
markably, that in spite of significant absorption losses, non-
linear Bloch waves can be excited within the optical pass
band of the metallic PC at frequencies below the effective
plasma cutoff frequency [see [13], Eq. (2.6), in which
Wy = wpsv'f, where f is the metallic filling fraction of the

eff
unit cell]. These nonlinear Bloch waves exhibit a laserlike
input-output characteristic and propagate primarily through
the nonmetallic void regions of the PC filament. We consider
a square lattice (¢=320 nm) of cylindrical silver rods with
radius r=0.4a situated in air. The effective plasma cutoff
frequency for this PC is Wpy = wPSO.4\J"TT2 1.7. The full di-
electric function of silver is ea(w)=eo—wlz,/w2+47r)?me[al(w)
where €=1.0, w,/27=1/\,=727 pm™", and Ypea(®) is
taken from optical measurement of the silver dielectric func-
tion at room temperature [20]. Experimental data used to
define Ypea (@) are shown in Fig. 2. The real and imaginary
parts of 47X me(@) are drawn in Fig. 2(a), while the Drude-
type backbone dielectric function is depicted in Fig. 2(b).

We consider three situations of experimental relevance:
(a) the air regions of the above-described metallic PC are
completely filled with a close-packed array of suitably
capped colloidal quantum dots, (b) a thin layer of random
surface resonators (of thickness ~0.04a) is present around
each and every silver rod and the remaining void regions
consist of air, and (c) a thin layer of random surface resona-
tors (of thickness 48 nm) surrounds each tungsten rod. We
assume that the dielectric function of the resonators has a
constant part, 4.0 in each case, as well as a frequency-
dependent part modeled as an inhomogeneously broadened
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collection of two-level systems. Each individual quantum
two-level system is attributed a transition frequency wg, and
homogeneously broadened susceptibility

(wy— w7y — i

I+ (ws - w03)27§ + wa(’-:)wswasl .

)?res(;’ ws;w0s) =80

(20)

The factor gy=(d’ar,/2mhce)[(p—1)/(p+1)INy [21] is
proportional to the concentration of the quantum dots or
other resonators per unit volume, Ny, and to the square of the
transition electric dipole moment d. The sign of g, (gain or
loss) depends on the pump parameter p. For realistic quan-
tum dots such as 5-nm-diameter PbS nanocrystals, the pa-
rameters of Eq. (20) are d~2X 107> C m=6 D (where by
definition one debye is 1 D=3.336 X107 Cm) [22,23]
and assuming a (reasonable) dephasing time T,=1 ps, we
obtain 7,=5.1X 10%. For a close-packed collection of quan-
tum dots of diameter 5 nm and capping layer of thickness 2
nm we set Ny~ 10'® cm™.

1, (1) ~ ngy[(1.76 X 107)/wp (p + D] gD

where n,,=b[ Vodzr Ug(r,t)/ hwg is the number of photons
per unit cell Vyb (V, is the two-dimensional volume, b is the
hypothetical height of the cell, and n,, is defined as the ratio
of the average energy in the electromagnetic field of fre-
quency wg to the energy of a photon with the same fre-
quency) [19]. |:(P)[*=|2f; 46;,(PI* is the normalized, non-
linear, Bloch mode field modulus squared, and the
normalization condition is given by [19]

i 2 * a[wfk(w)] . _
by, DT | =1 @D

Further details of this quantum dot model are found in Ref.
[19], Appendix D. We assume that the resonance frequencies
wo, of individual quantum dots are uniformly distributed
over an interval of frequencies Aw, around a central fre-
quency wg,. In accord with typical PbS quantum dot size
distributions, we take Aw;=5% X @y, [24]. The average
complex susceptibility of the inhomogeneously broadened
collection of quantum dots is given by

wo+Awg/2

_wdwOs)?res(F’ Wy wOs) . (22)

Xinn(7, @) = f

wo—Awg/2 s

Figure 3(a) depicts the inhomogeneously broadened sus-
ceptibility of the collection of the quantum dots obtained by
numerically evaluating Eq. (22) using the homogeneously
broadened susceptibility Eq. (20) with st(f)EO [drawn in
Fig. 3(b)]. The real and imaginary parts of the susceptibilities
drawn in Fig. 3 are normalized to 1 for ease of presentation.

A. Photonic crystal filament fully infiltrated with
inhomogeneously broadened colloidal quantum dots

We first consider the silver PC filament, described above,
to be fully infiltrated with inhomogeneously broadened,
close-packed quantum dots, as schematically shown in Fig.
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FIG. 3. (Color online) (a) Inhomogeneously broadened suscep-
tibility of the collection of quantum dots with resonance frequencies
uniformly distributed in the scaled frequency interval Aw, around
. (b) Homogeneously broadened susceptibility of the quantum
dots with resonance frequency w,. In both graphs the real part of
the susceptibility is drawn with a solid (blue) line and the imaginary
part with a dotted (brown) line. All curves are scaled to unit maxi-
mum amplitude for convenience.

4(a). The average (frequency-independent) dielectric con-
stant of the quantum dots is €,=4.0. The dielectric function
of the region occupied by quantum dots is €,+47X;,,, Where
the inhomogeneously broadened susceptibility X;i,, iS given
by Eq. (22). The BPC photonic band structure of the Drude-
type metallic rods (r=0.4a, €=1.0, w,,=2.33) in constant
dielectric background (e,=4.0) is shown in Fig. 5. The opti-
cal pass band (first photonic band) within the PBG spans a
scaled frequency range of ~0.0186, starting from
=0.4347 at the I" point and ending with w,=0.4533 at the M
point of the first Brillouin zone.

We choose the central frequency wg, of the distribution of
the quantum dots at a scaled frequency w,=0.4440 in coin-
cidence with the mid-frequency of the optical pass band.
Given the 5% inhomogeneous broadening, the frequency dis-

€p = 4.0

£

Silver

pYy

(a) (b)

FIG. 4. (Color online) (a) Unit cell of metallic photonic crystal
where the void regions between silver cylindrical rods of radius r
=0.4a are infiltrated with close-packed quantum dots. (b) The same
metallic PC as in (a) but now only a thin layer of random surface
resonators is covering all interior surfaces.
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FIG. 5. (Color online) Frequency correspondence between pho-
tonic band structure and metallic dielectric function. Band structure
shown in (a) is obtained by using the Drude-type dielectric function
drawn in (b). (c) shows the “residue” dielectric function of silver
used as part of the final “perturbation” 4.

tribution of the quantum dots spans a frequency range of
Aw,=0.0222, affording gain to the whole pass band.

When we include the non-Drude portion of the dielectric
function of the silver rods Ypeti(®,), the overall perturbation
of the backbone photonic crystal (Drude model metallic rods
with dielectric function €,— wfn/ wf, €=1.0, »,,=2.33, in di-
electric constant €,=4.0 background) becomes

X= ( €b4_’ITE0 + )?inh(r_), a)s))[l - aM(;)] + Xmetal(@y) aM(F)'

(23)

As a preliminary exercise to solving the full problem, we
replace the inhomogeneously broadened susceptibility of the
quantum dots with a position- and frequency-independent,
real parameter, namely, 477x;(7, @,)=const. We substitute
this constant value in Eq. (23), and then insert only the real
part of Eq. (23) into Eq. (19). Since the real part of Eq. (23)
depends on the scaled frequency through Y., We solve Eq.
(19) self-consistently. Ymew(®,) is taken from the experi-
ment. An interpolation procedure for finding ). vValues for
any desired scaled frequency based on the discrete data from
the optical measurement of the silver dielectric function is
used.

This preliminary process enables us to observe how the
frequencies of the photonic pass band, for different Bloch
vectors, depend on specific (hypothetical) constant values of
Xinn- We self-consistently calculate the frequencies of the first
photonic pass band for the I', X, and M points, for the con-
stant in the range (—0.3, 0.3), and draw the results in Fig. 6.
In reality, the constant depends on the scaled frequency via
Xinn(@,). We draw the real part of yj,,(w,) in Fig. 6 for com-
parison with the I', X, and M trajectories.

From Fig. 6 we observe that the 47y;,,=0 (horizontal)
line intersects the I'- and M-point trajectories at lower fre-
quencies than 0.4347 and 0.4533 (the Drude BPC), respec-
tively. These intersections represent the band edges of the
first pass band for the “augmented” BPC, with the real part
of the leftover (non-Drude) susceptibility of silver rods taken
into account.
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FIG. 6. (Color online) Real (solid blue) and imaginary (dashed
brown) parts of the inhomogeneously broadened susceptibility of
the collection of quantum dots with resonance frequencies uni-
formly distributed in the scaled frequency interval Aw,=0.0222
around @(,=0.444, for p=o. Three additional lines represent the
trajectory of the frequencies of the first band for the M (solid red
line), X (dashed green line), and I" (dotted black line) points as the
value of 4ry;,,=const is varied.

If the frequency dependence of ;. is considered, an ad-
ditional self-consistent calculation of Eq. (19) is needed. Re-
sults of this self-consistent calculation may be inferred from
Fig. 6. For illustration, consider the point in the graph where
the X-point trajectory intersects the 4Y;,,=0 line. The ab-
scissa of the intersection point, wy,, is the X-point frequency
of the first photonic pass band when the inhomogeneously
broadened resonators are switched off. Plugging w,, into
47 xinn(@,) yields the initial value of const=4;(w,). We
then find the intersection of the X-point trajectory with the
horizontal line passing through this value of the constant.
The abscissa of this intersection determines the updated
X-point frequency w;; of the first photonic pass band. We use
w, to obtain the updated value of the constant given by
47 Xinn(@,1), and so forth. The convergence of this calcula-
tion depends on the relative slope of the X-point trajectory
and the 4y;,, curve. From Fig. 6, we conclude that the
convergence of the calculation for the M and X points is
expected, but this is less obvious for the I' point. The itera-
tive procedure is described in more detail in [19]. In our
actual calculations we consider the frequency dependence of
Xinh and Yo Simultaneously and do not separate the self-
consistent procedure into the two steps described above. Fur-
thermore, we include the imaginary parts of both e and
Xinn- This leads to the laserlike transition in the photon num-
ber per unit cell, ny,, versus pump p as shown in Fig. 7. By
using the complex Xpmew(®,) (over and above the Drude
model), we realistically model a metallic PC where losses
incurred by electromagnetic waves in the metallic regions are
accounted for. The rod radius is chosen as r=0.4a for two
reasons: (i) to place the first photonic pass band in a fre-
quency region where metallic losses are minimized, and (ii)
to avoid a sharp spectral feature of Ypew(®;) at w;=0.55
arising from electronic interband transitions in bulk silver.

From Fig. 7 we observe that, in contrast with pure homo-
geneous broadening [19], the frequency of the nonlinear
Bloch wave for inhomogeneously broadened resonators does
not clamp to a single value but varies monotonically with the
pump parameter. This may be attributed to the wandering of
the mode toward other frequencies where gain is not yet used
(different sets of resonators).
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FIG. 7. (Color online) Shown as a function of the pump param-
eter p are (a) the number of photons per unit cell, 7, in the self-
consistent nonlinear Bloch wave, (b) the real part of the Bloch wave
frequency, and (c) the imaginary part of the Bloch wave frequency
for the first photonic band at the M point (solid black lines) and at
the X point (dashed red lines).

B. Photonic crystal filament with random surface resonators

For PC filaments with rough metal surfaces, we consider
two different situations. In the first model, the metallic rods
are described by the dielectric function of silver measured at
room temperature. In the second model, the dielectric re-
sponse of the rods is described by a Drude function where
the parameters (plasma frequency and electron mean colli-
sion time) for tungsten are used. In addition, the electron
mean collision time is modeled as depending inversely on
the absolute temperature, and the high-temperature behavior
of a microstructured tungsten filament is inferred.

1. Microstructured silver filament at room temperature

As in the previous section, we consider a square lattice of
cylindrical silver rods with radius r=0.4a (where a
=0.32 wum is the lattice constant) in air. Now the interior
metal surfaces of the PC are assumed to be covered with a
thin layer of inhomogeneously broadened resonators, as is
schematically shown in Fig. 4(b). The thickness of the reso-
nator layer is ~0.04a=13 nm. The average (frequency-
independent part) dielectric constant of the resonator layer is,
again, €,=4.0. The dielectric function of the region occupied
by the resonators is €,+4 ¥, Where the inhomogeneously
broadened susceptibility yi,, is given by Eq. (22). The pho-
tonic band structure of a PC with Drude metallic rods, coated
with the thin dielectric layer of €.=4.0 and situated in air
€,=1.0, is shown in Fig. 8. The isolated optical pass band
(below the effective plasma frequency) of the filament spans
a scaled frequency range of ~0.0532, starting from w,
=0.7788 at the I" point and ending with w,=0.8320 at the M
point of the first Brillouin zone [see Fig. 8(a)]. An illustration
for the magnitudes of the electric field of the Bloch modes at
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FIG. 8. (Color online) Photonic band structure for the 2D silver
backbone photonic crystal with unit cell depicted in Fig. 4(b). (a) is
obtained using the Drude-type dielectric function for the metallic
rods [shown in (b)]. Photonic band structure calculated using our
self-consistent integral equation (solid lines) is compared with re-
sults of CSM (red dots). (c) shows the residue dielectric function of
silver used as part of the final perturbation 47y. Rods are coated
with a quantum dot layer of thickness 0.04a. Quantum dots have a
volumetric concentration Ny=10'® ¢cm™ and the same electric di-
pole moment d (d is varied in the range 18-30 D).

X and M points of this band is given in Fig. 9.

The transition frequencies of resonators are chosen to be
uniformly distributed in the interval of scaled frequencies
(0.741,0.789), corresponding to 6% inhomogeneous broad-
ening and covering the spectral range of the optical pass
band. When we include the non-Drude portion of the dielec-
tric function of the silver rods, ¥mew (@), the overall pertur-
bation of the backbone photonic crystal becomes

— €€ _ - —
X= ( + Xinh(r’ (!)S)) 0C(;) + Xmetal(wx) GM(;)’

4ar
(24a)
where 6,,(7) is defined in Eq. (2), and
1 in thin coating region,
Oc(r) = . (24b)
0 otherwise.

Using the same iteration procedure as described in the
previous section, we observe that the lasinglike transition in

1.0 1.0

0.8 0.8

! 0.6 : 2 0.6

0.4 = 0.4

0.2 0.2

0.0 S—— 0.0

Band 1, X-point Band 1, M-point
(a) (®)

FIG. 9. (Color online) Absolute value of the electric field of
Bloch modes in the first photonic band at (a) X and (b) M points
with no losses (or gain) present. Clearly, the optical pass band sup-
ports light that propagates primarily through the void regions of the
filament with only evanescent coupling into metal rods.
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FIG. 10. (Color online) Pump threshold py, for the laserlike
transition as a function of the dipole moment d (1 D=3.336
X103 Cm) of quantum dots (volumetric density Ny
~ 10" c¢m™3), forming a thin coating around silver rods. Stronger
pumping is needed to support nonlinear Bloch waves at the X point
(dashed line, triangular red dots) than at the M point (solid line,
circular black dots) for the same dipole moment and density of
quantum dots.

the photon number per unit cell, ny, is not possible if the
volumetric density of quantum dots, N, and their dipole mo-
ment d are the same (N;~ 10" cm™ and d~6 D) as used
for the colloidal quantum dots of the previous section. This is
understandable since the gain provided by the thin surface
layer is not sufficient to overcome losses incurred by that
part of electric field penetrating the metallic region. Given
the size of localized surface plasmon resonators [16,17,25],
we once again choose to keep Ny=10'"® cm™ and vary the
dipole moment of quantum dots. We scan a range of dipole
moments from three to five times the colloidal quantum dot
value (d=6 D) used previously. These high values for the
dipole moments may be difficult to achieve using single-
electron interband transitions in quantum dots. However,
they may be possible for other resonance mechanisms (e.g.,
electronic excitation of localized plasmons in granular mate-
rial [25]) associated with a rough metal surface. In metals
deposited by sputtering techniques [17], surface roughness is
responsible for the occurrence of localized surface plasmon
resonances (LSPs) excited by either an external electromag-
netic field or the propagation of a nearby extended surface
plasmon [16]. LSP resonances exhibit a frequency distribu-
tion compatible with the size randomness of the metallic
grains on the silver film. Therefore they can be modeled as
an inhomogeneously broadened collection of surface resona-
tors. Similar to the excitation by the extended surface plas-
mon, localized surface plasmon resonances may also be ex-
cited by an electrical current injected through the interior of
the metal.

The dependence of the pump threshold for the laserlike
transition as a function of the dipole moment d is shown in
Fig. 10. Roughly speaking, a dipole moment of at least 18 D
is necessary for the emergence of the nonlinear Bloch modes,
given our assumed losses in the metal. This required dipole
strength decreases continuously as the thickness of the sur-
face roughening layer is increased.

2. Hot microstructured tungsten filament

We consider a square lattice (¢=2.8 wm) of cylindrical
tungsten rods with radius r=0.4a in air background analo-
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FIG. 11. (Color online) Photonic band structure for the 2D tung-
sten backbone photonic crystal with unit cell similar to Fig. 4(b)
(now the coating has a thickness 0.017a). (a) is obtained by using a
Drude-type dielectric function for the metallic rods [drawn in (b)].
Photonic band structure is calculated using our self-consistent inte-
gral equation (solid lines) and compared to the CSM results (red
dots). (c) shows the residue dielectric function of tungsten used as
part of the final perturbation 47X el

gous to the 3D woodpile photonic crystal used in measure-
ments of anomalous blackbody radiation [11]. The full di-
electric function of tungsten is

2 2 =
(o)) = €~ wpx/ws + 4T Xmetal (@)
where

€)= 10,

W, =al\,=28 pm X 5.17 um™' =14.476.

The Drude modeled dielectric response of the metal is given
by

w2 0)2 T

ps . J20)

wf(l + wffz) " lws(l + wfrz) @9
where 7=(T,/T)7), Ty=290 K, and 7=N,/a=1/(2.8 um
X 4.87x1072 um™')=7.334 [26-28]. Our choice for the
temperature dependence of 7 is consistent with the linear
temperature of the resistivity of metals at temperatures large
compared to the metallic phonon Debye frequency [29].

The photonic band structure of the backbone photonic
crystal is shown in Fig. 11(a). The first photonic band is very
flat, starting from w;=1.052 at the I" point and ending with
w,=1.056 at the M point of the first Brillouin zone. The
mean frequency of the first photonic band corresponds to a
wavelength A=2.7 um. The room temperature ‘“perturba-
tion” 477 ¥ mew(@,) is depicted in Fig. 11(c). The dependence
of 47 ¥ mewal( @) ON the temperature is shown in Fig. 12. For a
temperature of about 2290 K, the real part of the perturbation
reaches a value of around 100 [Fig. 12(b)] at a scaled fre-
quency w,=1 [first photonic band of the BPC, Fig. 11(a)].
This perturbation value is large compared to the BPC dielec-
tric function eo—wf,s/ w;=-200 for the same scaled fre-
quency w,=1 [Figs. 11(b) and 12(a)]. For even higher tem-
peratures, the real part of the perturbation tends to cancel
—wﬁs/wf of the BPC dielectric function as is evident from

4 W)?metal(ws) =
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FIG. 12. (Color online) Drude dielectric response of tungsten
for various temperatures where mean collision time of free elec-
trons is modeled as varying inversely with temperature. Parameters
used are w,,=14.476, 7=(T)/T)7), T(=290 K, and 7,=7.334
[26-28].

Eq. (25) using w,7— 0. Consequently, more BPC modes are
needed to have an accurate computation of the frequency of
the self-consistent nonlinear Bloch modes at high tempera-
tures. Nevertheless, for a temperature of about 2290 K, using
only the first 150 modes of the BPC and neglecting the
imaginary part of the perturbation, we obtain a band struc-
ture to within 1% of that obtained by the CSM method. The
imaginary part of the perturbation [Fig. 12(c)] initially in-
creases with the temperature but decreases at higher tempera-
tures.

We now coat the interior surfaces of the tungsten PC fila-
ment with an inhomogeneously broadened resonator layer of
thickness 0.017a=48 nm as shown in Fig. 3(b). The average
(frequency-independent part) dielectric constant of the reso-
nator layer is, again, €.=4.0. The transition frequencies of
resonators are chosen to be uniformly distributed in the in-
terval of scaled frequencies (1.04,1.07), corresponding to 3%
inhomogeneous broadening and covering the spectral range
of the optical pass band. For a close-packed collection of
resonators of diameter 5 nm separated from each other by a
distance of 4 nm, we set N;=10'® cm™. Assuming a dephas-
ing time 7,=1 ps for the resonators, we obtain 7, =673.2.
All resonators are considered to have the same dipole mo-
ment. For illustration, we consider a series of values for the
surface resonator dipole moment: d==17, 20, 22, 24, and 30
D. We calculate the dependence of the threshold py, for non-
linear Bloch waves on the temperature. Results are computed
for only the M point in the reduced Brillouin zone and are
shown in Fig. 13. We observe that for dipole moments below
about 20 D, there is a critical temperature above which non-
linear Bloch modes do not emerge regardless of the pump p.
Above the critical temperature, the gain provided by the
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FIG. 13. (Color online) Temperature dependence of the thresh-
old pump (for the emergence of nonlinear Bloch waves at the M
point of the first electromagnetic band) for different magnitudes of
the electric dipole moment of the surface resonators.

pumped resonators is insufficient to overcome the losses due
to electronic scattering in the metallic regions. In contrast,
for stronger resonances the pump threshold for exciting non-
linear Bloch waves shows a saturation with the temperature.
This is a consequence of the Drude model for the imaginary
part of the perturbation [Fig. 12(c)] which reaches its maxi-
mum value when w,7=1 and then decreases with increasing
temperature (smaller 7).

The persistence of nonlinear Bloch modes at high tem-
perature in a metallic PBG filament may have striking con-
sequences on the experimentally observed radiation spec-
trum [9-11]. When a current is driven through a connected
3D PBG filament, it may (i) excite phonons in the metal
(leading to the measured temperature of the metal) and (ii)
excite localized surface plasmon resonances in the metal
(leading to an anomaly in the radiation spectrum mediated by
nonlinear Bloch waves). As a result, strong peaks in the ra-
diation spectrum may appear, over and above the conven-
tional blackbody spectrum. The strength of radiation peaks
caused by nonlinear Bloch waves would exhibit a nonlinear
threshold behavior with pumping current.

VII. DISCUSSION

In this paper, we have demonstrated the emergence of
nonlinear Bloch waves (waves that satisfy the Bloch period-
icity, with purely real frequency and definite amplitude) in
metallic PC filaments at frequencies below the effective
plasma cutoff, under incoherent pumping. We have delin-
eated detailed characteristics of these modes for two simple
models: (i) a model of colloidal quantum dots infiltrated
through the void regions of the 2D PC, and (ii) a model of a
thin layer of resonators coating the inner surfaces of the me-
tallic PC. Both quantum dots and surface resonators are
modeled as two-level systems that can be inverted by inco-
herent pumping. Electromagnetic waves suffer losses while
penetrating the resistive metallic rods. Experimental data are
used to characterize the complex, frequency-dependent di-
electric response of the metal to the electromagnetic field.
Below a threshold pumping level, determined by the losses
in the system, there are only transient extended electromag-
netic modes in the metallic PC filament. Above the pumping
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threshold, nonlinear Bloch waves emerge, with features simi-
lar to those of Bloch modes in a linear, lossless, photonic
crystal. These nonlinear Bloch waves are particularly promi-
nent when an isolated optical pass band appears below the
effective plasma cutoff frequency of the metal. Unlike linear
Bloch modes, the nonlinear Bloch waves are characterized
by a definite amplitude (number of photons per unit cell) for
each choice of the pump parameter. This nonlinear wave
amplitude exhibits a laserlike input (pump)—output character-
istic. This suggests that losses in photonic crystals may be
offset by introducing regions of gain to yield propagating as
well as stationary Bloch waves throughout the photonic crys-
tal. Although our calculations were performed for 2D sys-
tems, similar optical pass bands and nonlinear Bloch waves
are expected to arise in suitably structured 3D metallic PCs
[30].

This work is an important generalization of the self-
consistent nonlinear Bloch wave method used previously
[19] to treat photonic crystals with purely positive real parts
of their dielectric functions. Focusing of nonlinear Bloch
waves to specific regions of the crystal is stronger in metallic
PCs than in dielectric photonic crystals. Stronger focusing of
light provides higher intensities and therefore higher interac-
tion rates of the electromagnetic radiation with the resona-
tors. In the present work, we considered an inhomogeneously
broadened collection of resonators. We observe that distribu-
tion of gain over a broader region of frequencies, together
with higher optical losses (despite the small penetration
depth of radiation into metallic regions), is responsible for a
higher pump threshold. In contrast to the case of purely ho-
mogeneous broadening, the nonlinear Bloch mode frequency
does not clamp to a single value above the threshold pump.

In order to make more precise contact with thermal light
emission experiments in periodically structured filaments
[9-11], it is necessary to include several other factors in our
model. Interaction between multiple nonlinear Bloch waves
and competition for gain among these modes must be con-
sidered. It is also important to consider the finite size of the
metallic PC filament and the nature (or lack thereof) of the
thermodynamic equilibrium between nonlinear Bloch modes
in the interior of the filament and exterior electromagnetic
waves that are radiated into free space by the filament. This
can change considerably for different boundary conditions,
depending on whether the filament is fully or partially en-
closed in an isothermal container or whether it radiates into
free space. For practical application to enhanced light emis-
sion in the visible spectrum, it is useful to consider other
metals such as iridium that have a much higher melting point
than silver but have a much higher plasma frequency than
tungsten. Finally, it is necessary to develop an appropriate
electrical pumping model that defines the excitation of reso-
nators within the structured metallic PBG filament. Never-
theless, our demonstration of nonlinear Bloch waves in peri-
odically structured hot (high-resistivity), metallic filaments
clearly suggests the possibility of anomalous light emission
over and above the conventional blackbody spectrum, under
strong pumping conditions.
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APPENDIX: NORMALIZATION OF EIGENMODES FOR
THE BACKBONE PHOTONIC CRYSTAL

Here we describe in detail the linear matrix equation for
Bloch modes in the backbone photonic crystal consisting of
Drude metal in a real, positive, and constant dielectric back-
ground. We derive the normalization parameter aj, for a
Bloch mode of the BPC with Bloch wave vector k and band
index /.

Since the step function 6(r), introduced in Eq. (2), has the
periodicity of the BPC, it can be Fourier decomposed in the

reciprocal lattice. We write 6(7)=3;65¢/°7, and denote

E (MD=e*u(f), with  u(?
=3;ii(G)e'S” a periodic function of the direct lattice
(Bloch’s theorem [31]), Eq. (4) becomes [13]

06-g'=Agg.  Using

2 2
. s . s @ e W -
2 (56,6’(k+ G) . (k+ G,) + jAé’ér)M(G )= ?ebu(G)
GI
(A1)

Solutions {¢; (7} of the Hermitian eigenvalue problem Eq.
(A1), corresponding to eigenvalues {wj,;}, form a complete
set of functions in the Hilbert space of Eq. (4). We write
zp,;,,(F)=(eik'; ! ag ug,(r) and we choose the (real) normaliza-
tion constant ay; such that

1

v (A2)

f d’r lﬂz,l(’j)lﬂé,z(’?)fé,l('f) =1,
v

where e,;,,(F)Eeh—(wi/w%I)ﬁ(F). Using u,;,Z(F):ZG’,ﬁ,;J((»}’)
and [ Vodzr eior =V, the normalization condition be-
comes

2

> > w
> IZE,,(G)ﬁE,z(G')<€b5é,é' - _fAé,é') = “i‘,z- (A3)
G.G' W

From Eq. (A1) we obtain

2
> - ®
> ftZ,(G)ﬁ;;,;(G’)(ebéa,é/ - —fAng,)
G.G' Wp
c? L ..
=2 (k+ G’ (G)u(G). (A4)
Wil G
Comparing Eq. (A3) and Eq. (A4) we obtain
2 c? S>> >
af,=— 2 (k+ Gl (G (AS5)

WG
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